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Kinetic saturation of the Weibel instability in a collisionless plasma
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We investigate the nonlinear saturation of the Weibel instability in an initially unmagnetized plasma in
which two electron streams propagate in opposite directions. We then estimate the fraction of the kinetic
energy of the counter-streaming electrons that is transformed by the instability into magnetic energy. In a fluid
cold plasma description this instability evolves nonlinearly into smaller and smaller spatial scales. The intro-
duction of a kinetic plasma description resolves these spatial singularities and shows that the instability
saturates when the effective electron gyroradius in the generated magnetic field becomes of the order of the
electron collisionless skin depth. This corresponds to an approximate energy equipartition.
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I. INTRODUCTION

The process of magnetic field generation in a plasma
its related inverse process, magnetic field annihilation du
field line reconnection in the presence of current gradie
represent two of the most important problems for both la
ratory and astrophysical plasmas. In the lower freque
range, magnetic fields emerge as the dominant factor in
plasma dynamics as a consequence of the effective canc
tion of the electric forces due to plasma quasineutrality.
higher frequencies, where this cancellation does not oc
the role of magnetic fields is enhanced in the presence of
particles. This is particularly true for ‘‘relativistic’’ plasma
where the magnetic part of the Lorentz force on the electr
becomes comparable to the electric part. These condit
are realized, for example, in laboratory plasmas interac
with subpicosecond, multiterawatt laser pulses up to 1019221

W/cm2 @1#.
In ‘‘relativistic’’ laser pulse regimes, quasistatic magne

fields can achieve very large intensities as high as 105 T with
important effects on the plasma dynamics, energy trans
and on the propagation and focalization of the laser pu
itself. These quasistatic magnetic fields may have impor
implications in inertial fusion experiments by focusing a
channeling the electromagnetic energy deep inside the p
in an overdense plasma, as required, for example, in the
ignitor scheme@2#. In an underdense plasma such magne
fields may also be responsible for the radial focusing of a
particle beam in a laser particle accelerator@3–5#. Several
mechanisms of magnetic field generation have been anal
~see Ref.@6# and references therein! that are effective in
different plasma regimes. At high frequencies, i.e., on sh
time scales over which the ions can be assumed to be im
bile and collisions are unimportant, the Weibel instability@7#
can efficiently generate magnetic fields in plasmas with
anisotropic electron momentum distribution@8#.

Recently the role of this electromagnetic-type instabil
has been reexamined@9,10#, in connection with the creation
of a magnetic wake behind an ultrashort laser pulse w
relativistic amplitudes propagating in an underdense plas
571063-651X/98/57~6!/7048~12!/$15.00
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It was proposed@9# that under such conditions, behind th
ultrashort laser pulse, the breaking of the Langmuir wa
generates a stream of very fast electrons. Due to pla
quasineutrality, an opposite electron stream must be p
duced in order to maintain a null total net current~the ions
are assumed to be at rest!. The quasistatic magnetic fiel
trailing behind the pulse was then interpreted as the resu
the repulsion between the current of the fast electrons and
oppositely directed return current carried by the backgrou
electrons. In this model, the anisotropy associated with
electron streams represents the external source of free~ki-
netic! energy able to feed magnetic fields. This is the phy
cal mechanism that drives the Weibel instability: when t
electric currents carried by the electron streams are
placed, one with respect to the other, by a transversal dis
bance the repulsion of the two oppositely directed curre
reinforces the initial displacement. As a result the magne
field grows in time.

The dynamics of the Weibel instability in an inhomog
neous collisionless plasma was analyzed in Ref.@11# in the
framework of a fluid-type description involving two electro
fluids, describing the initially counter-streaming electr
beams, plus a neutralizing background of immobile ions
was shown that the development of the Weibel instability
strongly nonuniform and that a spatial resonant-type sin
larity is formed. The largest magnetic field is generat
around this singularity. A first analysis of the nonlinear b
havior of the Weibel instability in an initially homogeneou
dissipationless plasma was presented in Ref.@12# within the
same fluid framework. In this case increasingly small spa
scales were shown to be formed as a consequence o
nonlinear development of the instability.

In the present paper, we discuss the nonlinear evolutio
the Weibel instability for perturbations of initial wavelength
much larger or comparable to the electron collisionless s
depth de . This length plays the role of the natural sca
length for the instability and will be used in the following a
the normalization length.

Using a fluid approximation for each of the two electro
populations, we investigate the nonlinear evolution of t
7048 © 1998 The American Physical Society
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57 7049KINETIC SATURATION OF THE WEIBEL . . .
Weibel instability that leads to the formation of singulariti
in a finite time.

In order to study the role of kinetic effects on the evo
tion of the Weibel instability and, in particular, on the fo
mation of the singularities, we have integrated numerica
the Vlasov equation coupled to the Maxwell equations.

First, in Sec. II, we briefly recall the two-fluid electro
equations~see also Ref.@11#!, and the linear dispersion equa
tion valid for infinitesimal perturbations in the nonrelativist
limit. Then we study the nonlinear evolution of these pert
bations both analytically~in the limit of strongly asymmetric
beams! and numerically, using initial value simulations. Th
analytical solutions are used to identify the basic trends
the nonlinear evolution of the instability that are seen in
numerical simulations. In Sec. III we introduce the kine
Vlasov-Maxwell system of equations and solve them n
merically varying the wavelength of the initial perturbatio
and the mean velocity of the initial electron streams. In S
IV conclusions are drawn about the efficiency of the ma
netic field generation.

II. FLUID APPROXIMATION

A. Basic equations

Assuming the ions to be at rest, thus providing a unifo
neutralizing background, we describe the dynamics of
two electron counter-streaming populations in the fluid
proximation by means of the two-fluid equations,

]pa

]t
52va•“pa2~E1va3B!, ~1!

]na

]t
5“• ja , ~2!

]B

]t
52“3E, ~3!

]E

]t
5“3B2(

a
ja , ~4!

where

va5
pa

~11pa
2!1/2

, ja52nava , a51,2.

Here all quantities are normalized with a characteristic d
sity n̄, the speed of lightc, and the plasma frequencyvp

5(4pn̄e2/me)
1/2. Notice that the normalized electron sk

depth is equal to 1.
In the following we limit our analysis to a magnetic fie

Bz generated by the Weibel instability with a single comp
nent along thez axis perpendicular to the plane of the initi
streams and of the wave vector of the perturbation. Thus
electric field E is two dimensional and lies in the (x,y)
plane.

We consider a homogeneous plasma in which at the in
time two uniform electron beams propagate in opposite
rections along thex axis,
y

-

n
e

-

c.
-

e
-

-

-

e

al
i-

v1~ t50!5v0,1ex , v2~ t50!52v0,2ex , ~5!

with total current equal to zero. That provides a relations
between the beam densities:

n0,1v0,15n0,2v0,2, ~6!

where the subscript zero indicates mean~zero order! quanti-
ties. We take a zero initial electric field and introduce a sm
magnetic perturbation with wave numberk0 along they axis.

B. Linear dispersion equation

The general linear dispersion equation of the growing a
propagating modes in a homogeneous plasma, obtaine
linearizing the system of Eqs.~1!–~4!, was given in@11#.
Here we recall the dispersion equation of the growing W
bel mode in the one-dimensional~1D! nonrelativistic limit
~see also@12#! which is needed in order to introduce th
discussion of its nonlinear evolution and saturation:

v2~12V2
22!~12V1

22!2k0
2@~12V1

22!~11V4
22!1V3

24#

50, ~7!

where in the nonrelativistic limit, and keeping the notatio
of Ref. @11#,

V1
225V2

225 (
a51

2
n0,a

v2
,

V3
225 (

a51

2

~21!a11
n0,av0,a

v2
, V4

225 (
a51

2 n0,av0,a
2

v2
. ~8!

In Fig. 1 we show the growth rate of the 1D Weibel inst
bility vs the wave numberk0 for different nonrelativistic
symmetric cases, 0.1<v0,15v0,2<0.6 ~runs 3→8 in Table
I!, and nonsymmetric cases, 0.3<v0,1<0.6, 0.06<v0,2
<0.12 ~runs 9→12 in Table I!.

The growth rate is larger for larger values of the stre
velocity and increases linearly withk0 for small values ofk0.
The increase of the growth rate withk0 saturates atk0.1,

FIG. 1. The growth rate of the 1D Weibel instability in th
symmetric~solid lines! and non-symmetric~dashed lines! case. The
numbers refer to the runs as listed in Table I.
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7050 57CALIFANO, PEGORARO, BULANOV, AND MANGENEY
corresponding to wavelengths of the order of the elect
skin depth.

In the symmetric case,v0,15v0,25v0, the growth rate ex-
pressed in dimensional units is equal to

g'k0v0 , ~9!

in the long wavelength limit,k0c/vp!1, and to

g'
v0

c
vp , ~10!

in the short wavelength limit,k0c/vp@1. Equations~9! and
~10! are in agreement with the results obtained for a stron
anisotropic two-temperature Maxwellian distribution~see,
e.g., Eq.~9.10.19! of Ref. @13#!.

In the nonsymmetric case,v0,1@v0,2, we find

g'k0v0,1S n0,1

n̄
D 1/2

, ~11!

in the long wavelength limit, and, in the short waveleng
limit,

g'
v0,1

c
vp,1 , ~12!

wherevp,15(4pn0,1e
2/m)1/2.

C. Nonlinear evolution of the Weibel instability

1. Analytical results

In the case of strongly asymmetric electron beams w
v0,1@v0,2 and n0,1!n0,2, the ratioe[n0,1/n0,2 can be used
as a small expansion parameter in order to find approxim
solutions of the nonlinear evolution of the Weibel instabil
in the nonrelativistic limit in the long wavelength regim
where the linear growth rate is linear ink0, and in the short
wavelength regime, where the linear growth rate is indep
dent ofk0. These solutions allow us to identify basic featur
of the nonlinear evolution of the instability that are seen
the numerical result shown in Sec. IV. In finding these a
proximate solutions we follow the derivation presented
@12#.

2. Long wavelength limit

First we consider a long wavelength perturbatio
k0c/vp!1, in which case the growth rate is a linear functi
of the perturbation wave number@see Eqs.~9! and~11!#. We
explore the nonlinear development of the instability in t
phase before the increasingly small spatial scales mentio
in Sec. I are formed. In this limit we use the quasineutra
approximation

(
a

navxa'0, ~13!

as suggested by the linear regime, and neglect the coup
to the transverse waves that are contained in the disper
equation ~7!. Using the smallness of the parametere
[n0,1/n0,2 and defining the variablek[n1 /n2!1, we ob-
tain
n

ly

h

te

n-
s

-

,

ed

ng
on

Bz'
]k

]y
. ~14!

Then, the equations that describe the Weibel instability in
long wavelength limit are

]k

]t
1

]ku

]y
50, ~15!

]u

]t
1u

]u

]y
5

]k

]y
. ~16!

Here we have used the variablesu5v1y /uv0x1u, andy and t
are normalized onl and onl /uv0x1u, respectively, withl the
characteristic scale length alongy. These equations have
form similar to that of the 1D gas dynamics equation
where, however, the pressure on the right hand side of
~16! is proportional to minus the densityk. The velocityu
can be written as the gradient of a potentialc as

u5
]c

]y
, ~17!

which leads to the integral

]c

]t
1

u2

2
2k5const. ~18!

Changing the independent variablesx andt into u andk, and
introducing the auxiliary function

x5c2yu1tS u2

2
2k D , ~19!

such that

t52
]x

]k
, and y5ut2

]x

]u
, ~20!

we obtain

]y

]u
5u

]t

]u
2k

]t

]k
, ~21!

]y

]k
5u

]t

]k
1

]t

]u
, ~22!

and, eliminatingy by cross differentiation and using Eq
~20!,

]

]kS k
]x

]k D1
]2x

]u2
50. ~23!

By introducing the variabler52k1/2, Eq. ~23! can be re-
duced to the Laplace equation in the cylindrical coordina
r andu.

According to the theory of hydrodynamic-type instabi
ties in the long wavelength limit there are two generic typ
of nonlinear motions@14,15# the compression wave breakin
and the rarefaction wave breaking.
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57 7051KINETIC SATURATION OF THE WEIBEL . . .
The compression wave is described near the singula
by

x~u,k!5alnk1
b

~u214k!1/2
, ~24!

which gives

t52
a

k
1

2b

~u214k!3/2
~25!

and

y5ut1
bu

~u214k!3/2
. ~26!

For negative values ofa andb, this solution describes th
~local! increase and the steepening of the density of the fa
and initially less numerous electrons that are pushed f
large distances by a velocity that is odd iny. Their velocity
increases as the time when the singularity occurs,t5ts , is
approached. Fort5ts , ]k/]y and ]u/]y and Bz tend to
infinity at finite k andu. Due to quasineutrality, the velocit
of the slow electron component is equal toku. It describes
the rarefaction in the slow electron density.

In Figs. 2~a!, 2~b!, and 2~c! the evolution of the fast com
ponent density and velocity and of the magnetic field,
spectively, are shown for a case where the ratioa/b is small
~and ts'0). According to Eq.~14! and the rules of implicit
differentiation, the magnetic field is given by

Bz5
1

J

]t

]u
, ~27!

where J is the Jacobian of the transformation fromy,t to
u,k:

J5U ]t

]u

]y

]k
2

]t

]k

]y

]uU. ~28!

We see the formation of the spike distribution in the elect
density and the appearance of two spike structures in
velocity and magnetic field dependence on they coordinate.

Choosing insteadx(u,k) of the form

x~u,k!5cF S k2

2
2ku2D1

u4

6 G , ~29!

we obtain

t5c~u22k!, ~30!

y5ut2 4
3 cu3. ~31!

For c.0 this solution describes the breakup of the fas
electron population into two separate parts as shown in
3. The velocity and the density of this population aroundy
50 are given byk'(y/t)22t/c,u52y/t. At t50, y50, k
vanishes and takes the peaked formk5(3y/4c)2/32t/c,u
ty

er
m

-

n
he

r
g.

5(3y/4c)1/3. The borders of the two parts of the separat
electron population move asy6564t3/2/3c1/2 with velocity
u656(t/c)1/2.

The validity of both solutions breaks down before t
singularity in the electron density gradient described by E
~25! and ~26! and the density hole formation described
Eqs. ~30! and ~31! can reach their final stage. In particula
the time evolution of these solutions shows that small sca
are formed, contrary to the long wavelength assumpti
Nevertheless these solutions are instructive as they illust
two of the main wave-break mechanisms in an unstable
dium @15# the compressional break, Eqs.~25! and ~26!, and
the rarefaction break, Eqs.~30! and~31!. These structures ar
seen in the numerical solutions presented in the next sec
and persist beyond the region where the long wavelen
approximation is valid.

3. Short wavelength limit

In order to follow the instability in the nonlinear regim
where small scales have already formed, we now cons
the short wavelength limit, whenk0c/vp@1. In this limit the
growth rate does not depend on the perturbation wave n
ber @see Eqs.~10! and~12!#. Using again the approximation
that can be shown to be valid in the short wavelength limit
the linear phase of the instability, we neglect the displa
ment current, i.e., we disregard the coupling to the transve
waves. Furthermore, we restrict ourselves to a phase of
nonlinear development of the instability where the inequa
v0xa.Ax still holds so thatvxa'v0xa . Here Ax is the x
component of the vector potential. Then we solve Eqs.~2!
and ~4! for na and obtain

]

]t
~Bz2vx1,2Ey!1vy2,1

]

]y
~Bz2vx1,2Ey!52vx1,2vy2,1,

~32!

to be solved together with Eq.~1!,

]vy1,2

]t
1vy1,2

]vy1,2

]y
52~Ey2vy1,2Bz!. ~33!

Introducing the Lagrangian derivatives

d/dt1,2[]/]t1vy1,2]/]y,

we obtain from Eqs.~32!, ~33! the following equations:

d2

dt1,2
2

Bz1vx1vx2Bz2vx2,1S d2

dt1,2
2

11D Ey50, ~34!

which describe the nonlinear evolution of the coupled Lan
muir waves and Weibel instability in the nonrelativisti
short wavelength limit. Forn0,1!n0,2, we expand Eq.~34! in
powers ofe[n0,1/n0,25vx2 /vx1. We find that, to leading
order in e, Eq. ~34! factorizes into modes withd/dt
;O(e0), corresponding to nonlinear Langmuir waves, a
into modes withd/dt;O(e1/2), corresponding to nonlinea
Weibel modes. The latter are given by

d2

dt1
2

Bz1vx1vx2Bz2vx2Ey50, and vx1Ey50. ~35!
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FIG. 2. Compression of the faster electron component:~a! density ratiok, ~b! velocity v, and~c! magnetic fieldBz vs t andy; y runs
from 23 to 3 andt from 0 to22. In ~a! t522 corresponds to the front of the figure andt50 to the back; in~b! and~c! t522 corresponds
to the back andt50 to the front.
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57 7053KINETIC SATURATION OF THE WEIBEL . . .
This factorization holds as long asd/dt1,2 can be ordered in
the same way in powers ofe1/2. Equations~35! indicate that
in this regime the nonlinear evolution of the Weibel instab
ity remains approximately quasineutral and has an expon
tial behavior in the Lagrangian variable of the faster elect
fluid. Conversely, the nonlinear evolution of the Langm
waves remains harmonic in the Lagrangian variable of
slower, more numerous, electron fluid.

By transforming the above solution back from Lagrang
to Eulerian variables, we see that Eqs.~35! predict the for-
mation of a single cusp in the density of the fast elect
component per wavelength of the initial perturbation. T
singularity arises in a finite timets;g21ln(k0j0), that de-
pends logarithmically on the amplitude of the initial di
placementj0.

When k becomes sufficiently large, the quasineutral
approximation is no longer valid, which leads to the increa
of they component of the electric field. A direct perturbativ
calculation shows that the difference betweend/dt1 and
d/dt2 causes the electrostatic fieldEy , and thus the coupling
term vpe

2 vx2Ey in the first of Eqs.~35!, to grow faster than
the magnetic fieldBz . This can be seen analytically by com
putingd/dt22d/dt1 and by using the following relationshi
between the Lagrangian coordinatesy0,1 andy0,2 of the two
electron fluids that correspond to the same Eulerian posi
y at time t,

y0,15y0,21
Bz~y0,1,t !

D
~36!

with D[(vx22vx1)/vx2vx1. This relationship is obtained b
integrating Eqs.~32! in time and by combining them so as
eliminateEy . The faster growth ofEy indicates that charge
separation cannot be neglected as the timets is approached

FIG. 3. Evolution of the density ratiok of the faster electron
component when it breaks into two pieces vst andy; y runs from
23 to 3 andt from 22 ~back! to 2 ~front!.
n-
n

e

n
s

e

n

when the factorization between the Weibel instability and
Langmuir waves ceases to be valid. The resulting coup
between the Weibel instability and the Langmuir mod
leads to the generation of small scale patterns. However,
effect does not prevent the wave break as it is seen in
results presented in the following subsection.

D. Numerical results

In order to study the nonlinear evolution of the Weib
instability in the fluid approximation, we integrate Eqs.~1!–
~4! numerically in the intervalLy52p/k0 with initial condi-
tions given by Eq.~5! for the electron stream velocities an
by

E~ t50!50, B~ t50!5b sin~k0y!ez , ~37!

for initial electric and magnetic field. The perturbation am
plitude b is equal to 1023.

The numerical code runs on massively parallel compu
~CM200 and CM5!; the details of the algorithm are given i
Ref. @11#.

Characteristic values of the electron beam velocities lie
the range@0.1c,0.6c# ~wherec is the speed of light!, which
are relevant for laser-plasma applications. At higher val
relativistic effects should be taken into account. This nonr
ativistic range is chosen because of the present limitation
the Vlasov code adopted~see Sec. III!, but it is expected that
the saturation mechanism will not be qualitatively chang
in a relativistic plasma.

In Fig. 4 we show the results of a symmetric run~run 1 in
Table I! made by using the initial conditions of Eqs.~5!–~37!
with the following parameters:v0,15v0,250.3, n0,15n0,2
50.5, andk050.2. In this figure we plot the magnetic fiel
Bz , they component of the electric field, and the densities
the two electron populations vsy at t560, 70, 72.

For t<60 ~linear phase! the amplitude of the magneti
field grows exponentially with growth rateg50.06. The per-
turbation does not propagate, in agreement with the nor
mode analysis which yields zero frequency (Re(v)50) for
this mode. Att560 the wave number of the perturbation
equal to its initial value which corresponds to the larg
wavelength admitted by the system~see Fig. 4 dashed lines!.

For t.60 the amplitude of the velocity perturbations b
comes comparable to that of the two initial streams and
nonlinear terms become important. During this phase~see
Fig. 4, continuous lines! higher and higher spatial harmonic
are produced in the regions close to the maxima and min
of the magnetic field. In these regions, the spatial structur
the magnetic field has a typical cusplike form and very la
density spikes are produced. From the last two frames of
4 we see that the two electron populations are concentr
around the peaks of the magnetic field, on opposite side
each peak. Each of the two electron populations devel
two spikes. In Fig. 4 we also show that an electrostatic fi
Ey is generated by the coupling of the instability to plasm
waves. This coupling is nonlinear since in the linear nonr
ativistic case the electrostatic fieldEy is decoupled from the
other fields. It is also seen thatEy grows faster, and eventu
ally becomes larger thanBz . Close to the time when the
singularities appear, the electrostatic part of the Lore
force in they direction is dominant over the magnetic par



is
t

e
as
ru

lo
ld
n
ro
th

c.
o
r

er
o

ec
fo

f

ne

on
re

th

e
e

ve
f t

n a

cts
in

o-

tic
of
w-

in
hort
the
-
as
c-
g-
-
a
s.
ns.

ven
ini-
tic
ility
pped

te,

se
d,
w
e

se
d,
wo
e
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In the case of two initially nonsymmetric beams, which
the more interesting case for laser plasma applications,
location and the spatial structure of the breaking are differ
from those seen in the symmetric case. In the initial ph
each of the two electron populations develops a single st
ture of the density per initial wavelength and the ratiok
[n1 /n2 peaks at the center as discussed in Sec. II C 2 be
Eq. ~24! and illustrated in Fig. 5. The resulting magnetic fie
Bz has an overall dipolar structure with a central curre
separating the two polarities carried by the faster elect
population and two external return currents carried by
slower electrons.

Later in time, whent'ts , the electrostatic fieldEy in-
creases faster thanBz , in agreement with the results of Se
II C 3 and, when two cusps are formed, the electric part
the Lorentz force in they direction becomes dominant ove
the magnetic part. In a number of runs not reported h
except for run 2 in Table I, we have found that the peaks
the magnetic field~as well as of the other quantities! move
closer to each other when the ratio ofv0,1/v0,2 increases and
that the splitting of the density peak in each of the two el
tron populations into two closely spaced cusps occurs
later and later times. In Fig. 5 we show the results o
non-symmetric run with growth rateg50.04~run 2 in Table
I! obtained by using the following initial parameters:v0,1

50.5, v0,250.1, n0,150.16̄, and n0,250.83̄. We plot the
same fields as in the symmetric case at the end of the li
phase~dashed lines! and during the nonlinear phase~con-
tinuous lines!.

The results of these fluid simulations show that the n
linear effects do not saturate the perturbation growth. Mo
over, they are responsible for the formation of the spikes
occur on a very short time scaleO(1) regardless of the ini-
tial conditions. Actually, there is no process in the mod
~the fluids are ideal! capable of saturating the growth of th
spikes. This is seen in the simulations as a numerical di
gence that occurs roughly at the same time regardless o

FIG. 4. The formation of the singularity in a symmetric ca
~run 1 in Table I!. In the four frames we show the magnetic fiel
the y component of the electric field, and the densities of the t
electron populations as a function ofy at the end of the linear phas
t560 ~dashed lines! and during the nonlinear evolutiont570,72
~solid lines!.
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mesh size, suggesting also that a singularity is forming i
finite time.

III. KINETIC EVOLUTION

In this section we investigate the role of the kinetic effe
after the time of the formation of the singularities found
the two electron-fluid description.

The linear theory of the Weibel instability of an anis
tropic electron population with thermal velocitiesv the1
.v the2 in an unmagnetized plasma was studied in a kine
description in@16#. For a geometry corresponding to that
the present paper, the stability condition of the purely gro
ing mode was found to be

ky
2>

v the1
2

v the2
2

21. ~38!

This condition shows that thermal effects, not included
the analysis in the previous sections, tend to stabilize s
wavelength modes first, which are the most unstable in
fluid approximation. In@17#, the quasilinear mode stabiliza
tion was studied in the limit of small anisotropy and w
shown to lead to the isotropization on the distribution fun
tion and to the transformation of kinetic energy into ma
netic energy. In@18#, different types of transverse electro
magnetic~e.m.! instabilities are studied analytically using
quasilinear approximation of the Vlasov-Maxwell equation
The results are then tested by numerical particle simulatio
In particular, two independent energy constants are gi
that remain such even when a significant fraction of the
tial kinetic energy anisotropy is transferred into magne
energy. Furthermore, the authors show that the instab
saturates when the bounce frequency of the electrons tra
by the magnetic field generated by the instability@see@18#,
Eq. ~71!# becomes comparable to the instability growth ra

o

FIG. 5. The formation of the singularity in a nonsymmetric ca
~run 2 in Table I!. In the four frames we show the magnetic fiel
the y component of the electric field, and the densities of the t
electron populations as a function ofy at the end of the linear phas
t570 ~dashed lines! and during the nonlinear phaset580 ~solid
lines!.
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g.vB[Uek

m

vB

c U1/2

. ~39!

The kinetic behavior of a collisionless plasma is described
the Vlasov equation that follows the evolution of the plas
particle distribution function in phase space under the ac
of the e.m. fields. The time evolution of the distribution fun
tion changes the plasma currents, and the Vlasov equa
must be coupled to Maxwell’s equations in order to hav
self-consistent description of the system. These equation
integrated numerically in the 2D (x,y) 3V (vx ,vy ,vz) phase
space by using a ‘‘Vlasov-Maxwell’’ code including th
magnetic term in the Lorentz force. The code has been te
in several different cases~Langmuir waves, Bernstein wave
Landau damping, and two-stream instability! and runs pres-
ently on the Cray T3D-T3E supercomputer. For the probl
under consideration we restrict ourselves to a 1D 2V phase
space (y,vx ,vy).

A. Equations

We normalize the Vlasov-Maxwell equations on the sa
characteristic quantities used in the fluid approximation~see
Sec. II A!: the electron massme , a characteristic particle
densityn̄, the speed of lightc, the electron plasma frequenc
vp5(4pn̄e2/me)

1/2, and the characteristic electric and ma
netic fields Ē5B̄52mcvp /e. Then, the dimensionles
equations read

] f

]t
1v•

] f

]x
1~E1v3B!

] f

]v
50, ~40!

]E

]t
5“3B2J, ~41!

]B

]t
52“3E. ~42!

As in the fluid approximation~see Sec. II!, we limit our
study to a magnetic fieldBz with a single component alon
the z axis and to a 2D electric fieldE5(Ex ,Ey).

Given the distribution functionf (y,vx ,vy) in phase space
with 0<y<Ly , we define, in dimensionless form, the me
particle density and velocity as

n~y,t !5E
2`

`

f ~y,vx ,vy!dvxdvy , ~43!

^v&~y,t !52
J

n
5

1

nE2`

`

f ~y,vx ,vy!vdvxdvy , ~44!

and the mean kinetic energy as

Ek~ t !5
1

Ly

1

2E0

Ly
~ex1ey!dy, ~45!

where
y
a
n

on
a
re

ed

e

-

H ex

eyJ ~y,t !5E
2`

`

f ~x,vx ,vy!3H vx
2

vy
2J dvxdvy . ~46!

Finally, the mean electric and magnetic energies are given

Ee~ t !5
1

Ly

1

2E0

Ly
~Ex

21Ey
2!dy, Em~ t !5

1

Ly

1

2E0

Ly
Bz

2dy.

~47!

B. Kinetic simulations

Equations~40!–~42! are integrated in the phase spa
(y,vx ,vy) with the following initial conditions:

f ~vx ,vy!5
1

pb
e2vy

2/b@de2~vx2v0,1!
2/b

1~12d!e2~vx2v0,2!
2/b#, ~48!

Ex5Ey50, Bz5bsin~k0y!, ~49!

whereb1/2 is the thermal velocity andd is a parameter mea
suring the symmetry of the electron beams (d50.5 in the
symmetric case! and b51023. Note that the initial particle
density is uniform and equal to one,^n&(y,t50)51. From
Eq.~48! we obtain

ex~ t50!5
b

2
1dv0,1

2 1~12d!v0,2
2 , ey~ t50!5

b

2
.

~50!

In Table I we present the results of a number of ‘‘kinetic
runs with a typical numerical mesh size of 12831403140
points. All these runs are performed withb50.01, Ly
52p/k0, and 0<t<200. The value ofb has been chosen
small for consistency with the fluid regimes considered in
previous sections. Thermal effects are important in the lin
phase only in runs 3 and 9. In Table I we list, from left
right, the number of the run, the wave numberk0 of the

TABLE I. Results of a number of ‘‘kinetic’’ runs: the number o
the run, wave numberk0, initial mean velocities of the two electron
streams,v0,1 and v0,2, kinetic energyEk

0, linear fluid growth rate
gfluid , kinetic linear growth rategkin , minimum valuere

min of the
gyroradiusre , and efficiencyh.

Run k0 v0,1 v0,2 Ek
0 gfluid gkin %e

min h

1 0.2 0.3 0.3 0.05 0.06 0.06 1.7 0.1
2 0.2 0.5 0.1 0.03 0.04 0.04 1.2 0.04
3 1.0 0.1 0.1 0.01 0.07 0.02 4.5 0.01
4 1.0 0.2 0.2 0.025 0.14 0.10 1.5 0.12
5 1.0 0.3 0.3 0.05 0.21 0.18 1.2 0.16
6 1.0 0.4 0.4 0.085 0.28 0.25 1.1 0.26
7 1.0 0.5 0.5 0.13 0.35 0.32 1.4 0.38
8 1.0 0.6 0.6 0.185 0.41 0.41 1.2 0.5
9 1.0 0.3 0.06 0.014 0.09 0.05 1.2 0.03
10 1.0 0.4 0.08 0.021 0.12 0.09 1.1 0.0
11 1.0 0.5 0.1 0.03 0.15 0.12 1.1 0.06
12 1.0 0.6 0.12 0.041 0.17 0.16 1.5 0.0
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initial perturbation, the initial mean velocities of the tw
electron streamsv0,1 and v0,2, the kinetic energyEk

0 at t
50, the linear fluid growth rategfluid , the kinetic linear
growth rategkin , the minimum value%e

min of the gyroradius
%e(t) and finally the efficiencyh5max@Em(t)/Ek

0#. We define
the reference electron gyroradius as the ratio between
smaller initial velocity of the streams and the maximu
value ~in space! of the magnetic field,

%e~ t !5
min~v0,1,v0,2!

max@B~y,t !#
. ~51!

This reference value measures the strength of the mag
field Bz and the characteristic size of the electron orbits.

The fluid growth rategfluid is obtained by solving the
linear dispersion equation of Eq.~7! and the kinetic growth
rategkin is calculated by making, during the linear phase
best fit of the curve@Em(t)#1/2. In the nonsymmetric runs 2
and 9→12, we have fixed the ratio between the two be
velocities, v0,250.2 v0,1. Therefore, by requiring that th
total initial current is zero, we obtaind50.16̄ ~i.e., n0,1

50.16̄, n0,250.83̄), while in the symmetric cased50.5 ~i.e.,
n0,15n0,250.5).

C. The kinetic Weibel instability

In the first two runs~see Table I! we consider two initially
symmetric beams with mean opposite velocitiesv0,15v0,2
50.3 and two nonsymmetric beams of velocitiesv0,150.5,
v0,250.1. The beams are perturbed by an initial sinusoi
perturbation of wave numberk050.2, see Eqs.~48! and~49!.
These cases, except for the nonzero temperature (b50.01),
are analogous to the two fluid runs described in Sec. II D

In Fig. 6 we show the time evolution of the kineticEk(t),
magneticEm(t) and electricEe(t) energies for run 1. After a
rapid transient,t,10, the magnetic energy starts to gro
exponentially with two times the growth rate of the mo
amplitude as obtained from the fluid homogeneous disp
sion relation. This agreement is not surprising since
wavelength of the perturbation is much larger thande and
k0

21g is much greater than the thermal velocity. During th

FIG. 6. The time evolution of the kinetic, magnetic and elect
energies for run 1.
he
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phase, the magnetic fieldBz(y) grows with a constant phas
~i.e., without propagation in they direction! as expected
from the fluid analysis.

For t;60 nonlinear effects become important and t
wave, as observed in the fluid approximation~see Sec. II D!,
starts to deform and to generate smaller and smaller sp
scales. As a result, the instability speeds up since fork0<k
<1 the growth rate increases linearly withk ~see Sec. II B!.

For longer times,t>70, kinetic effects come into play
and the instability saturates. The magnetic energyEm be-
comes statistically constant, while the electric energyEe
reaches its maximum value at saturation and then start
decrease. This is in agreement with the fact that as soo
the instability saturates and the growth rate decreases,
wave becomes dominated by the magnetic field, as is
case for low frequency e.m. waves.

The wave distortion and the saturation in the kinetic
gime are illustrated in Fig. 7 where we plot the magne
field Bz at timest540,70,100, and its Fourier spectrumBz,k
at t5100 ~left hand side! as well asex , ey , n, andEy at t
5100 ~right hand side! for run 1. The star in the bottom lef
hand frame represents the wavenumber of the initial per
bation. Notice thatex andey are spatially constant att50.

Figure 7 shows that the initial large scale perturbat
(k50.2), which is amplified but not deformed during th
linear phase, peaks in the same points as in the symm
fluid case~see Fig. 4!. In particular two peaks per wave
length are seen in each electron population. This corresp
dence between the number and location of the density pe
in the fluid and in the kinetic description is also observed
the asymmetric run 2 not shown here.

This process generates larger and larger wave num
k@k0, as in the fluid case. In addition it causes the elect
velocities in phase space to rotate around the peaks of
magnetic field, in agreement with the magnetic trapp
mechanism discussed in@18#. The distribution function in the
vy direction widens until it acquires a velocity spread of t
order of the initial beam velocity anisotropy alongvx . This
effective isotropization of the electron distribution functio
combined with the increase of the wave number leads to
mode stabilization, consistent with the linear stability con
tion given by Eq.~38!. The electron gyroradius%e defined
by Eq. ~51! decreases and eventually bothl[2p/k and%e
become of the same order and comparable tode ~in dimen-
sionless unitsde51). The small scale generation proce
stops and the instability saturates. Indeed, the next pictur
a later time (t5100) shows that the perturbation has t
same spatial scale as in the previous one att570, while in
the fluid case numerical divergence was observed att.72.
In the bottom left hand frame of Fig. 7 we show the Four
spectrum of the magnetic field att5100. We see that, in the
rangek0<k,2p/de , the excitation of the nonlinear highe
spatial harmonics has generated a power law spectrum
decreases exponentially for larger wave numbers; the s
exponential cut-off is observed in the spectra of all oth
quantities. In the first two frames on the right hand side
Fig. 7 we see thatey , which was initially negligible with
respect toex , becomes nearly comparable toex . Both quan-
tities peak in the same points of the magnetic field. T
electron density, see next picture, is spatially concentrate
this region. In the last frame we show the electrostatic fi



57 7057KINETIC SATURATION OF THE WEIBEL . . .
FIG. 7. The magnetic fieldBz ~left hand side! vs y at t540,70,100, its Fourier spectrumBz,k at t5100, and~right hand side! ex , ey , n
andEy at t5100. The star in the bottom left hand frame is the wave number (k050.2) of the initial perturbation.
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Ey perpendicular to the initial beam direction that, as in t
fluid case~see Fig. 4!, results from nonlinear interactions.

The saturation condition discussed here requires that
the perturbation wavelengthl and the electron gyroradius%e
become comparable to the electron skin depthde . This con-
dition is equivalent to that discussed in@18#, which requires
g.vB . In fact, by using Eq.~10!, Eq. ~39! can be rewritten
as%e /de5kde .

The time evolution of the electron distribution functio
the rotation of the beams around the magnetic fieldBz and
the spread in the direction perpendicular to the initial bea
are shown for the parameters of run 6 in Figs. 8–10. In F
8 the contour line of the electron distribution function aty
50.5 in the (vx ,vy) plane are shown at three different time
Notice that the two beams spread invy , reduce their differ-
ence invx , and become spatially separated. This is shown
the shrinking of the portion of the distribution that corr
sponds to negativevx velocities. A complementary situation
where the portion of the distribution that corresponds to po
tive vx velocities shrinks, is seen aty53.6 in the last frame.
This evolution of the distribution function is also seen
Figs. 9 and 10 where the isocontour corresponding to 0.
the maximum value of the distribution function is shown in
3D perspective as a function ofy, vx , andvy . By comparing
the isocontour of the initial beams, the two straight cylind
in each figure, with the isocontours att525, Fig. 9, and
t555, Fig. 10, we see ay-dependent rotation of the veloc
e

th

s
.

.

y

i-

of

s

ties in Fig. 9 followed by the beam separation iny in Fig. 10.
In runs 3–12 we study the efficiency of the Weibel ins

bility in generating magnetic energy by varying the intens
of the two initial electron beams in the symmetric as well
in the nonsymmetric case. In order to save computatio
resources without losing the main physical effects obser
in runs 1 and 2, we start the simulations with a larger init

FIG. 8. Shaded isocontours of the distribution functionf (vx ,vy)
at y50.5 ~first three frames! and y53.6 ~last frame! at times t
50,25,55,55, respectively. The parameters are those of run 6.



e

t

he

ki

e
m

e
m
is

ity.
be-

rons
.e.,

the
han

to
in

on-
is

mes

t in
all

hat

o-

p-
ans-

to

n-
tic
er-

n
n,

l
se

e

7058 57CALIFANO, PEGORARO, BULANOV, AND MANGENEY
wave number,k051, which in the fluid approximation lies
in the most unstable range~see Fig. 1!. In the cases where th
thermal velocity turns out to be comparable tog/k0, the
kinetic growth rategkin is significantly reduced with respec
to the fluid onegfluid ~see Table I!. Clearly, this thermal
stabilizing effect is more important for small values of t
beam velocities.

In Fig. 11 we show the magneticEm energy and the effi-
ciency h vs time, respectively. Note that an efficiencyh
50.5 corresponds to complete equipartition of the initial
netic energy into kinetic and magnetic energy.

First of all, we observe that the efficiency of the Weib
instability is enhanced when the two initial streams are sy
metric. For example, the symmetric runs 4 and 5 hav
lower or comparable growth rate with respect to the nonsy
metric runs 11 and 12, while their efficiency is larger. This

FIG. 9. Isocontours of the distribution functionf (y,vx ,vy) at
times t50 ~straight cylinders! and t525 ~bending cylinders!. Peri-
odic boundary conditions are used in they direction ~i.e., in the
direction of the cylinders!. Thevx andvy directions are the vertica
and the depth directions, respectively. The parameters are tho
run 6.

FIG. 10. The isocontours of the distribution functionf (y,vx ,vy)
as in Fig. 9, but at timest50 ~straight cylinders! and t555 ~pan-
cakes!. The parameters are those of run 6.
-

l
-
a
-

directly related to the saturation mechanism of the instabil
In the nonsymmetric case, as soon as the magnetic field
comes strong enough to make the gyroradius of the elect
of the slow beam of the order of the electron skin depth, i
as soon as the spreading in thevy direction is comparable
with v0,2, the instability saturates. However, at this stage
gyroradius of the electrons of the fast beam is greater t
the electron skin depth~in our case five times greater! since
v0,1.v0,2. As a result, most of the kinetic energy stored in
the ‘‘fast’’ beam is not converted into magnetic energy as
the symmetric case.

The efficiency increases, both in the symmetric and n
symmetric cases, when the growth rate of the instability
larger.

Finally, the evolution of the minimum gyroradius%e vs
time as defined in Sec. III B shows that in all runs~except for
run 3! saturation occurs as soon as the gyroradius beco
O(1) ~and comparable to the electron skin depth! regardless
of the initial conditions~beam velocities, wave number!. Af-
ter this time, in all cases, the gyroradius remains constan
time. In the case of run 3, which is characterized by a sm
growth rate, the duration of the simulation (tfin5200) is not
long enough to produce a gyroradius of order 1. Notice t
in the nonsymmetric case, wherev0,155v0.2, the minimum
gyroradius of the faster beam lies in the range@5,%e

min

,10#, larger thande .

IV. CONCLUSIONS

We have studied the fluid and the kinetic nonlinear ev
lution of the Weibel instability in the case of two initially
uniform nonrelativistic beams of electrons streaming in o
posite directions. The beams are perturbed by a small tr
versal disturbance of wavelength greater or comparable
the electron skin depthde .

In the linear phase, the Weibel instability grows expone
tially with a null phase velocity. In this phase, a magne
field perpendicular to the plane of the beams and of the p
turbation is generated.

Using a fluid approximation for each of the two electro
populations, we show that during the nonlinear evolutio

of

FIG. 11. The time evolution of the magnetic energyEm and of
the efficiencyh for different symmetric~left hand side! and non-
symmetric~right hand side! runs. The numbers correspond to th
number of the run as given in Table I.
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singularities form at finite times. This process may be und
stood as the breaking of the unstable waves. In the l
wavelength limit two spikes per perturbation waveleng
form in the magnetic field, in the velocity and in the dens
of each of the two electron populations. The location a
time development of these structures depend on whethe
two initial beams are symmetric or not. In the symmet
case the two spikes form, respectively, at the maximum
at the minimum of the initial perturbation. As the initia
beam asymmetry is increased, the two developing sp
form closer to each other. In the strong nonsymmetric ca
in the initial phase, a single structure is seen in the dens
Eventually, as the time when the singularity forms is a
proached, this structure develops two distinct but clos
spaced spikes. During the spike formation, larger and la
gradients are generated and, since in the fluid approxima
the plasma is assumed to be collisionless, the small s
generation cannot be stopped. As a result scales compa
or shorter than the characteristic kinetic scales~such as the
electron gyroradius! are formed in a few~normalized! times
and the fluid approximation becomes meaningless.

By integrating the~kinetic! Vlasov-Maxwell equations
numerically, we have found that the generation of sm
scales stops as soon as the scale length of the perturb
2p/k and the electron gyroradius%e become of the same
order and comparable to the electron skin depth. For
parameters of interest, i.e., for wavelengths of the order ode
and stream velocities approaching the velocity of light, t
result agrees with that obtained from a magnetic trapp
mechanism in@18#, in which case saturation occurs when t
magnetic bounce frequency is comparable to the growth r

Kinetic saturation is produced by the spread in the ph
space (vx ,vy) of the electron velocities in the direction pe
pendicular to that of the initial beams. At saturation th
spread is of the order of the initial velocity difference of t
two beams. This is in agreement with the evolution of t
gyroradius which, after a time transient that depends on
initial velocities of the electron beams, saturates at a valu
order 1. The reference electron gyroradius%e measures the
strength of the magnetic fieldBz and the characteristic siz
.
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of the electron orbits. The magnetic fieldBz generated by the
instability is strongly inhomogeneous and has different p
larities in different regions. In the regions whereBz goes
through zero the characteristic size of the electron orbits
be estimated as (lr)1/2, wherer is the electron gyroradius fa
from the inversion region andl is the scale length of the
magnetic field inhomogeneity.

It is worth noticing that in the kinetic regime the Fourie
spectrum of the magnetic field, as well as of all the oth
quantities, is characterized by a power law slope in the ra
k0<k,2p/de , and by an exponential cutoff at larger wav
numbers.

To study the magnetic field generation efficiency of t
Weibel instability, we have performed a number of ru
varying the beam velocities and symmetry. For two initia
symmetric beams we have found that, when the beam vel
ties are much greater than the thermal speed, the conve
efficiency can be rather large for velocities of the order
0.6c, leading to approximate equipartition between kine
and magnetic energy. On the other hand, when the beam
nonsymmetric the efficiency drops significantly.

The analysis presented in this paper refers to a spat
uniform initial configuration. In Ref.@11# it was shown that
in an inhomogeneous plasma the linear evolution of the W
bel instability has a resonant-type behavior and that a sp
singularity is formed. This provides a mechanism for t
formation of small scales additional to the nonlinear effe
described in Sec. II C. We can expect that in an inhomo
neous plasma the formation of this resonant spatial singu
ity will be stopped at a spatial scale length of the order of
electron skin depth by kinetic effects analogous to tho
studied in this paper.
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