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Kinetic saturation of the Weibel instability in a collisionless plasma
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We investigate the nonlinear saturation of the Weibel instability in an initially unmagnetized plasma in
which two electron streams propagate in opposite directions. We then estimate the fraction of the kinetic
energy of the counter-streaming electrons that is transformed by the instability into magnetic energy. In a fluid
cold plasma description this instability evolves nonlinearly into smaller and smaller spatial scales. The intro-
duction of a kinetic plasma description resolves these spatial singularities and shows that the instability
saturates when the effective electron gyroradius in the generated magnetic field becomes of the order of the
electron collisionless skin depth. This corresponds to an approximate energy equipartition.
[S1063-651%98)00706-3

PACS numbses): 52.35.Qz, 52.35.Mw, 52.40.Nk, 52.65.K]

[. INTRODUCTION It was proposed9] that under such conditions, behind the
ultrashort laser pulse, the breaking of the Langmuir wave

The process of magnetic field generation in a plasma andenerates a stream of very fast electrons. Due to plasma
its related inverse process, magnetic field annihilation due tquasineutrality, an opposite electron stream must be pro-
field line reconnection in the presence of current gradientsjuced in order to maintain a null total net currétite ions
represent two of the most important problems for both laboare assumed to be at resThe quasistatic magnetic field
ratory and astrophysical plasmas. In the lower frequencyrailing behind the pulse was then interpreted as the result of
range, magnetic fields emerge as the dominant factor in thihe repulsion between the current of the fast electrons and the
plasma dynamics as a consequence of the effective cancellappositely directed return current carried by the background
tion of the electric forces due to plasma quasineutrality. Atelectrons. In this model, the anisotropy associated with the
higher frequencies, where this cancellation does not occuglectron streams represents the external source of(kiee
the role of magnetic fields is enhanced in the presence of fastetic) energy able to feed magnetic fields. This is the physi-
particles. This is particularly true for “relativistic” plasmas cal mechanism that drives the Weibel instability: when the
where the magnetic part of the Lorentz force on the electronslectric currents carried by the electron streams are dis-
becomes comparable to the electric part. These conditiorgaced, one with respect to the other, by a transversal distur-
are realized, for example, in laboratory plasmas interactindgpance the repulsion of the two oppositely directed currents
with subpicosecond, multiterawatt laser pulses up 9719  reinforces the initial displacement. As a result the magnetic
Wien? [1]. field grows in time.

In “relativistic” laser pulse regimes, guasistatic magnetic ~ The dynamics of the Weibel instability in an inhomoge-
fields can achieve very large intensities as high &Tl@ith  neous collisionless plasma was analyzed in REf] in the
important effects on the plasma dynamics, energy transpoftamework of a fluid-type description involving two electron
and on the propagation and focalization of the laser pulsdluids, describing the initially counter-streaming electron
itself. These quasistatic magnetic fields may have importartteams, plus a neutralizing background of immobile ions. It
implications in inertial fusion experiments by focusing andwas shown that the development of the Weibel instability is
channeling the electromagnetic energy deep inside the pellstrongly nonuniform and that a spatial resonant-type singu-
in an overdense plasma, as required, for example, in the fakrity is formed. The largest magnetic field is generated
ignitor schemd2]. In an underdense plasma such magnetiaround this singularity. A first analysis of the nonlinear be-
fields may also be responsible for the radial focusing of a fashavior of the Weibel instability in an initially homogeneous
particle beam in a laser particle accelerdt®«5]. Several dissipationless plasma was presented in Rif] within the
mechanisms of magnetic field generation have been analyze@me fluid framework. In this case increasingly small spatial
(see Ref.[6] and references thergirthat are effective in scales were shown to be formed as a consequence of the
different plasma regimes. At high frequencies, i.e., on shortionlinear development of the instability.
time scales over which the ions can be assumed to be immo- In the present paper, we discuss the nonlinear evolution of
bile and collisions are unimportant, the Weibel instability  the Weibel instability for perturbations of initial wavelengths
can efficiently generate magnetic fields in plasmas with amuch larger or comparable to the electron collisionless skin
anisotropic electron momentum distributi{. depthd.. This length plays the role of the natural scale

Recently the role of this electromagnetic-type instability length for the instability and will be used in the following as
has been reexaming@,10], in connection with the creation the normalization length.
of a magnetic wake behind an ultrashort laser pulse with Using a fluid approximation for each of the two electron
relativistic amplitudes propagating in an underdense plasmagopulations, we investigate the nonlinear evolution of the
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Weibel instability that leads to the formation of singularities  7-%0f T T
in a finite time. §

In order to study the role of kinetic effects on the evolu- 2 ]
tion of the Weibel instability and, in particular, on the for- 5
mation of the singularities, we have integrated numerically L }f ]
the Vlasov equation coupled to the Maxwell equations. e

First, in Sec. I, we briefly recall the two-fluid electron = ;. PR

equationgsee also Ref11]), and the linear dispersion equa-
tion valid for infinitesimal perturbations in the nonrelativistic
limit. Then we study the nonlinear evolution of these pertur-
bations both analyticallyin the limit of strongly asymmetric
beam$ and numerically, using initial value simulations. The r
analytical solutions are used to identify the basic trends in
the nonlinear evolution of the instability that are seen in the °’%
numerical simulations. In Sec. Il we introduce the kinetic
Vlasov-Maxwell system of equations and solve them nu- g 1. The growth rate of the 1D Weibel instability in the
merically varying the wavelength of the initial perturbation symmetric(solid lineg and non-symmetriédashed linescase. The
and the mean velocity of the initial electron streams. In SeChumbers refer to the runs as listed in Table |.

IV conclusions are drawn about the efficiency of the mag-
netic field generation.

10.00

Vi(t=0)=vg16, Vo(t=0)=—vgHy, 5

[l. FLUID APPROXIMATION with total current equal to zero. That provides a relationship
. . between the beam densities:
A. Basic equations
Assuming the ions to be at rest, thus providing a uniform No,100,1= No, 20,25 (6)
neutralizing background, we describe the dynamics of the
two electron counter-streaming populations in the fluid apWhere the subscript zero indicates méaero ordey quanti-
proxima’[ion by means of the two-fluid equations, ties. We take a zero initial electric field and introduce a small

magnetic perturbation with wave numberalong they axis.
IPa

at =—V,-Vp,— (E+V,XB), 1

B. Linear dispersion equation

The general linear dispersion equation of the growing and
%:V-] ) propagating modes in a homogeneous plasma, obtained by
ot a linearizing the system of Eq$1)—(4), was given in[11].

Here we recall the dispersion equation of the growing Wei-
d bel mode in the one-dimensiondlD) nonrelativistic limit
E:_VXE’ ©) (see also[12]) which is needed in order to introduce the
discussion of its nonlinear evolution and saturation:

% vxB-3 .. @ @ (1-09(1-07) - KI(1- ) (1+0; )+ 057

at
=0, )
where . o : :
where in the nonrelativistic limit, and keeping the notations

of Ref.[11],
Pa

=(1+—p2)1/2, jaz—nava, a=1,2.
a

Va
2 n

-2 ~-2_ 0a

2,7=0, _21 2

Here all quantities are normalized with a characteristic den- st

sity n, the speed of light, and the plasma frequenay, 9 9 )
=(4mne?/my)Y2. Notice that the normalized electron skin 0:2=3 (_1)a+1m ;2= Noaloa ®)
. 3 2 4 2

depth is equal to 1. a=1 ® a=1

In the following we limit our analysis to a magnetic field
B, generated by the Weibel instability with a single compo-In Fig. 1 we show the growth rate of the 1D Weibel insta-
nent along the axis perpendicular to the plane of the initial bility vs the wave numbek, for different nonrelativistic
streams and of the wave vector of the perturbation. Thus theymmetric cases, Ov,=v7,<0.6 (runs 3—8 in Table
electric field E is two dimensional and lies in thex(y) ), and nonsymmetric cases, €3(;<0.6, 0.06<vg,
plane. <0.12(runs 9—12 in Table ).

We consider a homogeneous plasma in which at the initial The growth rate is larger for larger values of the stream
time two uniform electron beams propagate in opposite divelocity and increases linearly witty for small values okg.
rections along th& axis, The increase of the growth rate willy saturates ako=1,
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corresponding to wavelengths of the order of the electron Ik
skin depth. B~ oy (14
In the symmetric case,g ;=vg,=v(, the growth rate ex-
pressed in dimensional units is equal to Then, the equations that describe the Weibel instability in the
long wavelength limit are

y~Kovo, 9 g g

in the long wavelength limitk,c/w,<1, and to ﬁ_K + &Lu =0 (15)
ot gy
Vo
=6 @ (10 au N U dk 16
at Yoy Ty (16

in the short wavelength limik,c/w,>1. Equationg9) and
(10) are in agreement with the results obtained for a stronglyHere we have used the variablesUlyIIUOXll, andy andt
anisotropic two-temperature Maxwellian distributidgeee, gre normalized oh and onl/|vgy|, respectively, with the

e.g., Eq.(9.10.19 of Ref. [13]). _ characteristic scale length aloyg These equations have a
In the nonsymmetric caseq 1>vy, we find form similar to that of the 1D gas dynamics equations,
12 where, however, the pressure on the right hand side of Eq.
~Kep Noa (11) (16) is proportional to minus the density. The velocityu
Y=Rolox == o can be written as the gradient of a potentjahs
in the long wavelength limit, and, in the short wavelength Y
limit u=—3: (17)
' y
Vo which leads to the integral
Y=o @ (12 g
gy  u?
wherew,, ;= (47N, ,£%/m)*2 5t T3 ~Kk=const. (18
C. Nonlinear evolution of the Weibel instability Changing the independent variableandt into u and«, and
1. Analytical results introducing the auxiliary function
In the case of strongly asymmetric electron beams with u?
Vo> Vg, andng 1<Ng,, the ratioe=ng 1/ny, can be used X=g=yutt| > —«], (19

as a small expansion parameter in order to find approximate

solutions of the nonlinear evolution of the Weibel instability sych that

in the nonrelativistic limit in the long wavelength regime,

where the linear growth rate is linear kg, and in the short

wavelength regime, where the linear growth rate is indepen- T 9K and y=ut- au’ (20)
dent ofky. These solutions allow us to identify basic features

of the nonlinear evolution of the instability that are seen inwe obtain

the numerical result shown in Sec. IV. In finding these ap-

proximate solutions we follow the derivation presented in ay at ot 21

[12]. ﬁ—UE—Kﬁ, (22)
2. Long wavelength limit ay st ot

First we consider a long wavelength perturbation, e Ut o (22)

KoC/ <1, in which case the growth rate is a linear function

of the perturbation wave numbgsee Eqs(9) and(11)]. We  and, eliminatingy by cross differentiation and using Eq.
explore the nonlinear development of the instability in the(zo),

phase before the increasingly small spatial scales mentioned

in Sec. | are formed. In this limit we use the quasineutrality gl ax\ %
approximation P Kﬁ) + on. (23
u
; Navxa™~0, (13 By introducing the variabley=2«'2 Eq. (23) can be re-

duced to the Laplace equation in the cylindrical coordinates
as suggested by the linear regime, and neglect the coupling andu.
to the transverse waves that are contained in the dispersion According to the theory of hydrodynamic-type instabili-
equation (7). Using the smallness of the parameter ties in the long wavelength limit there are two generic types
=ng /Ny, and defining the variabl@=n;/n,<1, we ob-  of nonlinear motion§14,15 the compression wave breaking
tain and the rarefaction wave breaking.
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The compression wave is described near the singularity= (3y/4c)Y3. The borders of the two parts of the separated
by electron population move as. = + 4t%%3c'2 with velocity
u. =+ (t/c)¥2
The validity of both solutions breaks down before the

x(u,x)=alnx+ (24)  singularity in the electron density gradient described by Egs.

(UP+4x) 12 i i i
(25 and (26) and the density hole formation described by
which gives Egs. (30) and (31) can reach their final stage. In particular,
the time evolution of these solutions shows that small scales
are formed, contrary to the long wavelength assumption.
t=— 24 2b (25) Nevertheless these solutions are instructive as they illustrate
K (u?+4k)%? two of the main wave-break mechanisms in an unstable me-
dium [15] the compressional break, Eq&5) and (26), and
and the rarefaction break, Eq&0) and(31). These structures are
seen in the numerical solutions presented in the next section
bu and persist beyond the region where the long wavelength
y=ut+ (a0 (26)  approximation is valid.

. . . . 3. Short wavelength limit
For negative values & andb, this solution describes the

(local) increase and the steepening of the density of the faster In order to follow the instability in the nonlinear regime
and initially less numerous electrons that are pushed fronthere small scales have already formed, we now consider
large distances by a velocity that is oddyinTheir velocity ~ the short wavelength limit, whekyc/ wp>1. In this limit the
increases as the time when the singularity occtiest, is growth rate does not depend on the perturbation wave num-
approached. Fot=t, dx/ay and du/dy and B, tend to  Der[see Eqs(10) and(12)]. Using again the approximations
infinity at finite x andu. Due to quasineutrality, the velocity thatcan be shown to be valid in the short wavelength limit in

of the slow electron component is equal#a. It describes the linear phase of the instability, we neglect the displace-
the rarefaction in the slow electron density. ment current, i.e., we disregard the coupling to the transverse

In Figs. 2a), 2(b), and Zc) the evolution of the fast com- Waves. Furthermore, we restrict ourselves to a phase of the
ponent density and velocity and of the magnetic field, renonlinear development of the instability where the inequality

spectively, are shown for a case where the rafiois small ~ Voxa>Ax Still_holds so thatv,~voya. Here A, is the x
(andt,~0). According to Eq(14) and the rules of implicit component of the vector potential. Then we solve Egs.

differentiation, the magnetic field is given by and(4) for n, and obtain
14t J J
B.=— — (27) E(Bz_vxl,ZEy) + Uy2,lW(Bz_ Ux1,2Ey) = T Ux1,Vy2,1s
Z Jau’
(32)
whereJ is the Jacobian of the transformation fromt to  to be solved together with Eql),
u,k:
Ju 1,2 Ju 1,2
gt ay at gy vyt = — (Ey—vy1.B,). (33
_|ty oty 28) at ay
Ju dk  dk Jdu

Introducing the Lagrangian derivatives
We see the formation of the spike distribution in the electron
density and the appearance of two spike structures in the

velocity and magnetic field dependence on yheoordinate. e obtain from Eqs(32), (33) the following equations:
Choosing insteagy(u, «) of the form

2
K
(?—KUZ

d/dt]_’zE al ot + l}yl’z(?/ay,

2 d2
4

——B,tv,qvpB,—v —+1
+€ , (29) dtiz z x1Yx2Pz x2,1] dtiz

c

E,=0, (34

x(Uu,xk)=c

which describe the nonlinear evolution of the coupled Lang-
muir waves and Weibel instability in the nonrelativistic,
short wavelength limit. Fong ;<ng ,, we expand Eq(34) in
powers of e=ng1/Ng,=vy, /vy, We find that, to leading
order in €, Eq. (34) factorizes into modes withd/dt
~0(€%, corresponding to nonlinear Langmuir waves, and

_ , , into modes withd/dt~ O(e?), corresponding to nonlinear
For ¢>0 this solution describes the breakup of the fastefy/aibel modes. The latter are given by

electron population into two separate parts as shown in Fig.

3. The velocity and the density of this population aroynd d2

=0 are given byk~ (y/t)?>—t/c,u=—y/t. Att=0, y=0, — Bt vxvxeB;—vEy=0, and v, E,=0. (35
vanishes and takes the peaked form (3y/4c)?*—t/c,u dt

we obtain
t=c(u’—«), (30

y=ut—scud. (31
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to the back and=0 to the front.

FIG. 2. Compression of the faster electron compon@tdensity ratiox, (b) velocity v, and(c) magnetic fieldB, vst andy; y runs
from — 3 to 3 andt from 0 to—2. In(a) t=—2 corresponds to the front of the figure an<0 to the back; inb) and(c) t=—2 corresponds
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when the factorization between the Weibel instability and the

Langmuir waves ceases to be valid. The resulting coupling
between the Weibel instability and the Langmuir modes

leads to the generation of small scale patterns. However, this
effect does not prevent the wave break as it is seen in the
results presented in the following subsection.

D. Numerical results

In order to study the nonlinear evolution of the Weibel
instability in the fluid approximation, we integrate Eq$)—
(4) numerically in the interval,=27/K, with initial condi-
tions given by Eq(5) for the electron stream velocities and

by
E(t=0)=0, B(t=0)=b sin(koy)e,, (37)

for initial electric and magnetic field. The perturbation am-
plitude b is equal to 10°3.

The numerical code runs on massively parallel computers
(CM200 and CM5; the details of the algorithm are given in
Ref. [11].

Characteristic values of the electron beam velocities lie in
the rangg 0.1c,0.6c] (wherec is the speed of light which

FIG. 3. Evolution of the density ratia of the faster electron gre relevant for laser-plasma applications. At higher values
component when it breaks into two piecestwandy; y runs from  relativistic effects should be taken into account. This nonrel-
—3 to 3 andt from —2 (back to 2 (front). ativistic range is chosen because of the present limitation of
the Vlasov code adoptddee Sec. I, but it is expected that

This factorization holds as long ak#dt; , can be ordered in  the saturation mechanism will not be qualitatively changed
the same way in powers ef%. Equations(35) indicate that in g relativistic plasma.

in this regime the nonlinear evolution of the Weibel instabil- |5 Fig. 4 we show the results of a symmetric rwan 1 in
ity remains approximately quasineutral and has an exponemraple |) made by using the initial conditions of E¢5)—(37)
tial behavior in the Lagrangian variable of the faster electronyith the following parametersvy,=vo,=0.3, Ng1=Ng o
fluid. Conversely, the nonlinear evolution of the Langmuir:0_5, andk,=0.2. In this figure we plof the maghetic field
waves remains harmonic in the Lagrangian variable of thgs_ they component of the electric field, and the densities of
slower, more numerous, electron fluid. _ the two electron populations wsatt=60, 70, 72.

By tre}nsformmg the above solution back fro_m Lagrangian  gor t<60 (linear phasp the amplitude of the magnetic
to Eulerian variables, we see that E89) predict the for-  fje|q grows exponentially with growth rate=0.06. The per-
mation of a single cusp in the density of the fast electron,mation does not propagate, in agreement with the normal
component per wavelength of the initial perturbation. Thisy,qe analysis which yields zero frequency (®ef0) for
singularity arises in a finite timesw,fl'n(kOfO)' that de-  his mode. Att=60 the wave number of the perturbation is
pends logarithmically on the amplitude of the initial dis- ¢quq) to its initial value which corresponds to the largest
placement,. o _ _wavelength admitted by the systdsee Fig. 4 dashed lings

When « becomes sufficiently large, the quasineutrality rqr =60 the amplitude of the velocity perturbations be-
approximation is no longer valid, which leads to the increasg,gmes comparable to that of the two initial streams and the
of they component of the electric field. A direct perturbative nonlinear terms become important. During this phésse
calculation shows that the difference betweefdt; and  Fig 4, continuous lineshigher and higher spatial harmonics
d/dt, causes the electrostatic fiei}, and thus the coupling - are produced in the regions close to the maxima and minima
term w42y in the first of Egs.(35), to grow faster than  of the magnetic field. In these regions, the spatial structure of
the magnetic field,. This can be seen analytically by com- the magnetic field has a typical cusplike form and very large
putingd/dt,—d/dt; and by using the following relationship density spikes are produced. From the last two frames of Fig.
between the Lagrangian coordinatgs, andy,, of the two 4 we see that the two electron populations are concentrated
electron fluids that correspond to the same Eulerian positioaround the peaks of the magnetic field, on opposite sides at

y at timet, each peak. Each of the two electron populations develops
two spikes. In Fig. 4 we also show that an electrostatic field

_ B2(Yo,1,1) E, is generated by the coupling of the instability to plasma

Yor=Yozt =4 (36 \aves. This coupling is nonlinear since in the linear nonrel-

ativistic case the electrostatic fiel], is decoupled from the
with A=(v,,—vy1)/vxvx. This relationship is obtained by other fields. It is also seen thktf, grows faster, and eventu-
integrating Eqs(32) in time and by combining them so as to ally becomes larger thaB,. Close to the time when the
eliminateE, . The faster growth o, indicates that charge singularities appear, the electrostatic part of the Lorentz
separation cannot be neglected as the tigis approached force in they direction is dominant over the magnetic part.
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FIG. 4. The formation of the singularity in a symmetric case  FIG. 5. The formation of the singularity in a nonsymmetric case
(run 1 in Table J. In the four frames we show the magnetic field, (run 2 in Table ). In the four frames we show the magnetic field,
the y component of the electric field, and the densities of the twothe y component of the electric field, and the densities of the two
electron populations as a functionyft the end of the linear phase €lectron populations as a functionyft the end of the linear phase
t=60 (dashed linesand during the nonlinear evolutian=70,72  t=70 (dashed linegsand during the nonlinear phase-80 (solid
(solid lineg. lines).

In the case of two initially nonsymmetric beams, which is][_ne_ESh _size, suggesting also that a singularity is forming in a
finite time.

the more interesting case for laser plasma applications, th
location and the spatial structure of the breaking are different

from those seen in the symmet_ric case. In the in_itial phase I1l. KINETIC EVOLUTION
each of the two electron populations develops a single struc- ) ) ) . o
ture of the density per initial wavelength and the rakio In this section we investigate the role of the kinetic effects

=n, /n, peaks at the center as discussed in Sec. Il C 2 belowfter the time of the formation of the singularities found in

Eq.(24) and illustrated in Fig. 5. The resulting magnetic field the two electron-fluid description.

B, has an overall dipolar structure with a central current The linear theory of the Weibel instability of an aniso-

separating the two polarities carried by the faster electroffopic electron population with thermal veloCitiesye;

population and two external return currents carried by the>Utez iN @n unmagnetized plasma was studied in a kinetic

slower electrons. description in[16]. For a geometry corresponding to that of
Later in time, whent~t, the electrostatic fiel&, in-  the present paper, the stability condition of the purely grow-

creases faster thay,, in agreement with the results of Sec. iNg mode was found to be

Il C 3 and, when two cusps are formed, the electric part of

the Lorentz force in thg direction becomes dominant over 2

v
the magnetic part. In a number of runs not reported here, kf,; tzhel— (38
except for run 2 in Table I, we have found that the peaks of Uthe2

the magnetic fieldas well as of the other quantitiemove

closer to each other when the ratiowf;/voincreases and  Thjs condition shows that thermal effects, not included in
that the splitting of the density peak in each of the two electhe analysis in the previous sections, tend to stabilize short
tron populations into two closely spaced cusps occurs fofyavelength modes first, which are the most unstable in the
later and later times. In Fig. 5 we show the results of aflyig approximation. I17], the quasilinear mode stabiliza-
non-symmetric run with growth ratg=0.04(run 2 in Table  tjon was studied in the limit of small anisotropy and was
) obtained by using the following initial parameters;;  shown to lead to the isotropization on the distribution func-
=0.5, vg=0.1, ng;=0.16, and ny,=0.83. We plot the tion and to the transformation of kinetic energy into mag-
same fields as in the symmetric case at the end of the linearetic energy. In[18], different types of transverse electro-
phase(dashed linesand during the nonlinear phageon-  magnetic(e.m) instabilities are studied analytically using a
tinuous lines. guasilinear approximation of the Vlasov-Maxwell equations.
The results of these fluid simulations show that the non-The results are then tested by numerical particle simulations.
linear effects do not saturate the perturbation growth. Morein particular, two independent energy constants are given
over, they are responsible for the formation of the spikes thathat remain such even when a significant fraction of the ini-
occur on a very short time scal®(1) regardless of the ini- tial kinetic energy anisotropy is transferred into magnetic
tial conditions. Actually, there is no process in the modelenergy. Furthermore, the authors show that the instability
(the fluids are idealcapable of saturating the growth of the saturates when the bounce frequency of the electrons trapped
spikes. This is seen in the simulations as a numerical diveby the magnetic field generated by the instabilge[18],
gence that occurs roughly at the same time regardless of tHeg. (71)] becomes comparable to the instability growth rate,
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1/2 2

39 €x o Ux
(39 € (y,t)ZJ f(X,vx,0y) X 032/ dv,dv,. (46)

ekvB

==
YZOBTIm ¢

The kinetic behavior of a collisionless plasma is described b)&_ ) _ _ )

the Vlasov equation that follows the evolution of the plasma’ nally, the mean electric and magnetic energies are given by
particle distribution function in phase space under the action 110L 1170L

of the e.m. fields. The time evolution of the distribution func- g _t)= — _J y(E§+ E2)dy, Eq(t)=— _j yBgdy.

tion changes the plasma currents, and the Vlasov equation Ly2Jo Y Ly2Jo

must be coupled to Maxwell’s equations in order to have a (47)
self-consistent description of the system. These equations are

integrated numerically in the 2Dx(y) 3V (vy,vy,v,) phase B. Kinetic simulations

space by using a “Vlasov-Maxwell” code including the
magnetic term in the Lorentz force. The code has been teste(d
in several different casékangmuir waves, Bernstein waves, y
Landau damping, and two-stream instabjlignd runs pres- 1 , )
ently on the Cray T3D-T3E supercomputer. For the problem f(vg,vy)=—5e WA se~(xvo)h
under consideration we restrict ourselves to a N ghase B

Equations(40)—(42) are integrated in the phase space
Ux,Uy) With the following initial conditions:

space ¥,vy,vy). +(1— 86)e (xv02’IA] (48)

A. Equations Ex=E,=0, B,=bsin(kgy), (49

We normalize the Vlasov-Maxwell equations on the same U2 . .

characteristic quantities used in the fluid approximateee Whr(iar:eﬁ?[h IS trrlnen:h(tarrmafl \tﬁ |OCI|ty ?rnﬁ 'z a paragu;t(iarr] rS]ea-
Sec. Il A): the electron massn,, a characteristic particle suring the symmetry of the electron beams=0. €

. — . symmetric caseand b=10"3. Note that the initial particle
densityn, the speed of light, the electron plasma frequency density is uniform and equal to on@)(y,t=0)=1. From

wp= (47ne?/my)Y2, and the characteristic electric and mag- Eq.(48) we obtain
netic fields E=B=—mcwy/e. Then, the dimensionless

equations read €(t=0)= §+ S8+ (1- 00, €(t=0)= g
of of of (50)
EJFV' 5+(E+VXB)E—O, (40
In Table | we present the results of a number of “kinetic”
JE runs with a typical numerical mesh size of »2840x140
—=VXB-J, (41) points. All these runs are performed witd=0.01, L,
ot =2/ko, and 0<t=<200. The value of3 has been chosen

small for consistency with the fluid regimes considered in the

previous sections. Thermal effects are important in the linear
i~ VXE (42 phase only in runs 3 and 9. In Table | we list, from left to

right, the number of the run, the wave number of the

As (;n the fiuid ap.pr(]zXIIrgatlo.rﬁsee .Selc. I we limit olur TABLE I. Results of a number of “kinetic” runs: the number of
study to a magnetic fielé, with a singie component along e ryn, wave numbeky, initial mean velocities of the two electron
the z axis and to a 2D electric field= (E,,E,). streamsp,; andvg,, kinetic energyEy, linear fluid growth rate

_ Given the distributio_n functiqm(y,v_x,vy) in phase space Yau, kinetic linear growth rateyy,, minimum valuep™ of the
with O<y=<L,, we define, in dimensionless form, the mean gyroradiusp,, and efficiencys.

particle density and velocity as

Run ko wvg1 o2 = Yiuid  Ydn Qe 7
n(y,t):f £y, ,0y)dudoy . (43) 1 02 03 03 005 006 006 17 01
- 2 02 05 01 003 004 004 12 004
3 10 01 01 001 007 002 45 001
J 1(- 4 10 02 02 0025 014 010 15 012
Wy h==-r= ﬁf_xf(y'vx wy)vdv oy, (44) 5 10 03 03 005 021 018 12 0.6
6 10 04 04 0085 028 025 11 026
and the mean kinetic energy as 7 10 05 05 013 035 032 14 0.38
8 10 06 06 0185 041 041 12 05
110 9 10 03 006 0014 009 005 1.2 003
E(t)= Ef (ex+€,)dy, 45 10 10 04 008 0021 012 009 11 005
y2Jo 11 10 05 01 003 015 012 1.1 006
12 10 06 012 0041 017 016 15 007

where
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The kinetic energy phase, the magnetic fieB,(y) grows with a constant phase
(i.e., without propagation in thg direction as expected
from the fluid analysis.

For t~60 nonlinear effects become important and the
wave, as observed in the fluid approximatigee Sec. Il D)
starts to deform and to generate smaller and smaller spatial
scales. As a result, the instability speeds up sincekferk

0.060

0.055

0.050

ﬁ

0.045

0.040

S Frrrrrrrrrp eI

50 100 150 200
time =<1 the growth rate increases linearly wkhsee Sec. Il B
s The magnetic (1) and electric (2) energy For longer timest=70, kinetic effects come into play
10°2L E and the instability saturates. The magnetic eneggy be-
10735 = comes statistically constant, while the electric eneky
0745 d reaches its maximum value at saturation and then starts to
107 3 decrease. This is in agreement with the fact that as soon as
100E = e (ent) E the instability saturates and the growth rate decreases, the
0 50 100 150 200 wave becomes dominated by the magnetic field, as is the
time case for low frequency e.m. waves.
FIG. 6. The time evolution of the kinetic, magnetic and electric  1he wave distortion and the saturation in the kinetic re-
energies for run 1. gime are illustrated in Fig. 7 where we plot the magnetic

field B, at timest=40,70,100, and its Fourier spectrusg

initial perturbation, the initial mean velocities of the two att=100 (left hand sid¢ as well ase,, €,, n, andE, att
electron streams; and vy, the kinetic energyES at t =100 (right hand sidgfor run 1. The star in the bottom left
—0. the linear fluid growth rateyq,g, the kinetic linear hand frame represents the wavenumber of the initial pertur-

growth ratey,;,, the minimum valuep™ of the gyroradius bati(_)n. Notice thatk, ande, ar_e_s_patially constant at=0. _
Figure 7 shows that the initial large scale perturbation

. . w _ O .
0,() and finally the efficiency; = max En(t)/E]. We define (k=0.2), which is amplified but not deformed during the

the reference electron gyroradius as the ratio between tqmear hase peaks in the same points as in the symmetric
smaller initial velocity of the streams and the maximum, . P » pes me p y
fluid case(see Fig. 4 In particular two peaks per wave-

value(in spacg of the magnetic field, length are seen in each electron population. This correspon-
. dence between the number and location of the density peaks
mln(voyl,voyz) . . . . . L. . .
()= — (51  inthe fluid and in the kinetic description is also observed in
max{ B(y,t)] the asymmetric run 2 not shown here.
This process generates larger and larger wave numbers
This reference value measures the strength of the magnetie-k,, as in the fluid case. In addition it causes the electron
field B, and the characteristic size of the electron orbits.  yg|ocities in phase space to rotate around the peaks of the
The fluid growth rateyy,q is obtained by solving the magnetic field, in agreement with the magnetic trapping
linear dispersion equation of E7) and the kinetic growth  mechanism discussed ib8]. The distribution function in the
rate yyin i calculated by making, during the linear phase, & direction widens until it acquires a velocity spread of the
best fit of the curvé E,(t)]*2 In the nonsymmetric runs 2 order of the initial beam velocity anisotropy along. This
and 912, we have fixed the ratio between the two beameffective isotropization of the electron distribution function
velocities, v ,=0.2 vo. Therefore, by requiring that the combined with the increase of the wave number leads to the
total initial current is zero, we obtaid=0.16 (i.e.,, no;  Mode stabilization, consistent with the linear stability condi-
=0.16, ny ;= 0.83), while in the symmetric casé=0.5(i.e.,  tion given by Eq.(38). The electron gyroradiug. defined
N 1=Ng,=0.5). by Eqg.(51) decreases and eventually botks27/k and o,
' ' become of the same order and comparabldtdin dimen-
sionless unitsd,=1). The small scale generation process
stops and the instability saturates. Indeed, the next picture at
In the first two rungsee Table)lwe consider two initially —a later time {=100) shows that the perturbation has the
symmetric beams with mean opposite velocitigs,=v,, same spatial scale as in the previous one=af0, while in
=0.3 and two nonsymmetric beams of velocitigs;=0.5,  the fluid case numerical divergence was observet=at2.
vo2=0.1. The beams are perturbed by an initial sinusoidaln the bottom left hand frame of Fig. 7 we show the Fourier
perturbation of wave numbédg=0.2, see Eq948) and(49). spectrum of the magnetic field &t 100. We see that, in the
These cases, except for the nonzero temperajre0(01), rangeko<k<2w/d., the excitation of the nonlinear higher
are analogous to the two fluid runs described in Sec. Il D. spatial harmonics has generated a power law spectrum that
In Fig. 6 we show the time evolution of the kinefig(t), decreases exponentially for larger wave numbers; the same
magneticE,(t) and electricE,(t) energies for run 1. After a exponential cut-off is observed in the spectra of all other
rapid transientt<10, the magnetic energy starts to grow quantities. In the first two frames on the right hand side of
exponentially with two times the growth rate of the modeFig. 7 we see that,, which was initially negligible with
amplitude as obtained from the fluid homogeneous disperespect tce, , becomes nearly comparabledp. Both quan-
sion relation. This agreement is not surprising since theities peak in the same points of the magnetic field. The
wavelength of the perturbation is much larger titgnand  electron density, see next picture, is spatially concentrated in
ko 1y is much greater than the thermal velocity. During thisthis region. In the last frame we show the electrostatic field

C. The kinetic Weibel instability
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FIG. 7. The magnetic fiel®, (left hand sid¢vsy att=40,70,100, its Fourier spectruBy  att=100, and(right hand sidge,, €,, n

andE, att=100. The star in the bottom left hand frame is the wave numkg#0.2) of the initial perturbation.

E, perpendicular to the initial beam direction that, as in theties in Fig. 9 followed by the beam separatioryim Fig. 10.
fluid case(see Fig. 4, results from nonlinear interactions. In runs 3—12 we study the efficiency of the Weibel insta-

The saturation condition discussed here requires that bothility in generating magnetic energy by varying the intensity
the perturbation wavelengthand the electron gyroradigs,  of the two initial electron beams in the symmetric as well as
become comparable to the electron skin defath This con-  in the nonsymmetric case. In order to save computational
dition is equivalent to that discussed[ib8], which requires resources without losing the main physical effects observed
vy=wg. In fact, by using Eq(10), Eq.(39) can be rewritten in runs 1 and 2, we start the simulations with a larger initial
asp./d.=kd,.

The time evolution of the electron distribution function,
the rotation of the beams around the magnetic fi&jdand
the spread in the direction perpendicular to the initial beams
are shown for the parameters of run 6 in Figs. 8—10. In Fig.*
8 the contour line of the electron distribution functionyat
=0.5inthe ¢,v,) plane are shown at three different times.
Notice that the two beams spreaduip, reduce their differ-
ence inv,, and become spatially separated. This is shown by
the shrinking of the portion of the distribution that corre-
sponds to negative, velocities. A complementary situation, o5t ] o5t .

t =0, y=0.5

o

0.0f - &

o

0.0 0.5

Yy Yy

t = 25, y=0.5

0.5 0.5

ol O
-0.5} 0

-0.51

-0.5

t = 55, y=0.5 t = 55, y=3.6

where the portion of the distribution that corresponds to posi- TR

tive v, velocities shrinks, is seen gt=3.6 in the last frame. = % 1T e <.
This evolution of the distribution function is also seen in  _osf . ~0.5}

Figs. 9 and 10 where the isocontour corresponding to 0.6 of

the maximum value of the distribution function is shown in a “0s 00 08 w05 00 05

y Y

3D perspective as a function pfv,, andv, . By comparing
the isocontour of the initial beams, the two straight cylinders  FIG. 8. Shaded isocontours of the distribution functi¢n, 0y)
in each figure, with the isocontours &t 25, Fig. 9, and at y=0.5 (first three framesand y=3.6 (last framé at timest
t=>55, Fig. 10, we see g-dependent rotation of the veloci- =0,25,55,55, respectively. The parameters are those of run 6.
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Symmetric Non—symmeltric

sl 12

_af 10

0 20 40 60 80 100
time

1.000

0.100F

0.010} 9

0.001
10 20 30 40 50 20 40 60 80 100

time time
/ FIG. 11. The time evolution of the magnetic eneiy and of

the efficiency for different symmetric(left hand sid¢ and non-
symmetric(right hand sidg runs. The numbers correspond to the
number of the run as given in Table I.

FIG. 9. Isocontours of the distribution functidify,v,,v,) at
timest=0 (straight cylindersandt= 25 (bending cylinders Peri-
odic boundary conditions are used in thedirection (i.e., in the

direction of the cylinders Thev, andv, directions are the vertical . | lated h . hani fthei bili
and the depth directions, respectively. The parameters are those g*recty related to t 1€ saturation mechanism of the 'r_]Sta ihty.
run 6. In the nonsymmetric case, as soon as the magnetic field be-

comes strong enough to make the gyroradius of the electrons
of the slow beam of the order of the electron skin depth, i.e.,
as soon as the spreading in thg direction is comparable
with vg 5, the instability saturates. However, at this stage the
gyroradius of the electrons of the fast beam is greater than
the electron skin deptfin our case five times greajesince
V01> Vo2 As a result, most of the kinetic energy stored into
the “fast” beam is not converted into magnetic energy as in
the symmetric case.

The efficiency increases, both in the symmetric and non-
symmetric cases, when the growth rate of the instability is

wave numberky,=1, which in the fluid approximation lies
in the most unstable rangsee Fig. 1 In the cases where the
thermal velocity turns out to be comparable 46k,, the
kinetic growth ratey,, is significantly reduced with respect
to the fluid oneyy,q (see Table )l Clearly, this thermal
stabilizing effect is more important for small values of the
beam velocities.

In Fig. 11 we show the magnetlg,,, energy and the effi-
ciency n vs time, respectively. Note that an efficienay
=0.5 corresponds to complete equipartition of the initial ki- larger

netic energy into kinetic and magnetic energy. Fi . - .
; " . inally, the evolution of the minimum gyroradius, vs
First of all, we observe that the efficiency of the Weibel time as defined in Sec. 11l B shows that in all rugcept for

msta_blllty is enhanced when the two initial streams are SYMyin 3 saturation occurs as soon as the gyroradius becomes
metric. For example, the symmetric runs 4 and 5 have (1) (and comparable to the electron skin deptgardiess
lower or comparable growth rate with respect to the nonsym- P

metric runs 11 and 12, while their efficiency is larger. This isOf the_ |n|_t|a| c_ondmons(beam velocme_s, wave f?“mbe“f' .
ter this time, in all cases, the gyroradius remains constant in

time. In the case of run 3, which is characterized by a small
growth rate, the duration of the simulatioty{=200) is not
long enough to produce a gyroradius of order 1. Notice that
in the nonsymmetric case, whewg ;=5v,,, the minimum
gyroradius of the faster beam lies in the rarfde<og™
<10], larger thand,.

IV. CONCLUSIONS

We have studied the fluid and the kinetic nonlinear evo-
lution of the Weibel instability in the case of two initially
uniform nonrelativistic beams of electrons streaming in op-
posite directions. The beams are perturbed by a small trans-
versal disturbance of wavelength greater or comparable to
the electron skin deptl,.

In the linear phase, the Weibel instability grows exponen-
/ tially with a null phase velocity. In this phase, a magnetic

field perpendicular to the plane of the beams and of the per-

FIG. 10. The isocontours of the distribution functibfy,v,,v,)  turbation is generated.
as in Fig. 9, but at times=0 (straight cylindersandt=55 (pan- Using a fluid approximation for each of the two electron
cake$. The parameters are those of run 6. populations, we show that during the nonlinear evolution,
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singularities form at finite times. This process may be underef the electron orbits. The magnetic fiddd generated by the
stood as the breaking of the unstable waves. In the loninstability is strongly inhomogeneous and has different po-
wavelength limit two spikes per perturbation wavelengthlarities in different regions. In the regions wheBg goes
form in the magnetic field, in the velocity and in the density through zero the characteristic size of the electron orbits can
of each of the two electron populations. The location andoe estimated ad §)'/ wherep is the electron gyroradius far
time development of these structures depend on whether tffeom the inversion region andl is the scale length of the
two initial beams are symmetric or not. In the symmetricmagnetic field inhomogeneity. _
case the two spikes form, respectively, at the maximum and It is worth noticing tha_t in the kinetic regime the Fourier
at the minimum of the initial perturbation. As the initial SPECtrum of the magnetic field, as well as of all the other
beam asymmetry is increased, the two developing Spikeguantltles, is characterized by a power law slope in the range

form closer to each other. In the strong nonsymmetric caseo=K<27/de, and by an exponential cutoff at larger wave

in the initial phase, a single structure is seen in the density1UMbPers. L . .
Eventually, as the time when the singularity forms is ap- To study the magnetic field generation efficiency of the

proached, this structure develops two distinct but closelyVeiPel instability, we have performed a number of runs
spaced spikes. During the spike formation, larger and largef2ying the beam velocities and symmetry. For two initially
gradients are generated and, since in the fluid approximatiopyMMetric beams we have found that, when the beam veloci-
the plasma is assumed to be collisionless, the small scak€S are much greater than the thermal speed, the conversion
generation cannot be stopped. As a result scales comparatigiciency can be rather large for velocities of the order of
or shorter than the characteristic kinetic scalesch as the 0-6 leéading to approximate equipartition between kinetic
electron gyroradiusare formed in a fewnormalized times ~ nd magnetic energy. On the other hand, when the beams are
and the fluid approximation becomes meaningless. nonsymmetric the efficiency drops significantly. '

By integrating the(kinetic) Vlasov-Maxwell equations T he a_n_a_ly5|s pr_esent_ed in this Paper refers to a spatially
numerically, we have found that the generation of Srmjl”_unn‘or_m initial configuration. In Ref[ll] it was §h0wn that _
scales stops as soon as the scale length of the perturbatiiha" inhomogeneous plasma the linear evolution of the Wei-
27/k and the electron gyroradiug, become of the same el instability has a resonant-type behavior and that a spatial

order and comparable to the electron skin depth. For thgingularity is formed. This provides a mechanism for the

parameters of interest, i.e., for wavelengths of the ordel, of ormation of small scales additional to the nonlinear effects
and stream velocities approaching the velocity of light, thisdescribed in Sec. Il C. We can expect that in an inhomoge-
eous plasma the formation of this resonant spatial singular-

result agrees with that obtained from a magnetic trappin il b d il e h of the order of th
mechanism i 18], in which case saturation occurs when the'Y Wil be stopped at a spatial scale length of the order of the

magnetic bounce frequency is comparable to the growth rat&lect.ron_ Sk'r.' depth by kinetic effects analogous to those
Kinetic saturation is produced by the spread in the phas&ttdied in this paper.

space ¢ ,vy) of the electron velocities in the direction per-

pendicular yto that of the initial beams. At saturation this ACKNOWLEDGMENTS
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